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LETTER TO THE EDITOR 

Numerical calculations of non-Ohmic hopping 
conductivity in one-dimensional systems 

J A McInnest, P N Butcher$ and G P Triberis$§ 
t Department of Computer Science, University of Strathclyde, Glasgow G1 lXH, UK 
$ Department of Physics, University of Warwick, Coventry CV4 7AL, UK 

Received 25 June 1990 

Abstract. The current-field characteristic of a ID ,  variable-range hopping system is calculated 
for the first time by solving non-linear electron conservation equations. A previous linearised 
calculation is shown to violate total electron number conservation. This condition is imposed 
in the non-linear calculation togetherwith appropriate modifications of the contact boundary 
conditions. For weak fields these changes have no effect on  the results but for large fields 
there are large changes in the calculated values of the current. The standard deviation of the 
fluctuations of logJ produced by varying the chemical potential p is shown to decrease with 
increasing field. Previous calculations of the variation of (IogJ), with the number of sites, 
N, are extended to N = 10‘. Fluctuationsof(logJ), withincreasing Narefound,  -0.5, about 
a systematic decrease towards what appears to be an asymptotic limit. 

This investigation was prompted by the non-Ohmic current-voltage characteristics 
observed in I D  hopping systems by Webb [ 1,2]  and calculated for 3~ hopping systems 
by Bottger and co-workers [3-51. The calculations in reference [3] are for ‘R-hopping’, 
i.e. the electron energies are assumed to be the same on all the hopping sites. References 
[4] and [5] are for the more realistic case of ‘R-&-hopping’ in which the electron energies 
vary from site to site. However the calculations in [4] and [5] are made for numbers of 
sites N S 500 which is very small for a 3~ model and, to further simplify the calculations, 
the hopping rate is given the form appropriate to strong electron-phonon coupling. In 
the more usual case of weak electron-phonon coupling a more complicated rate is 
required. In this paper we outline some preliminary numerical results for I D  hopping 
systems for the case of weak electron-phonon coupling. The restriction to I D  makes it 
easier to simulate macroscopic samples with N = 103-104. 

In a previous paper [6] two of the authors investigated Ohmic behaviour for such a 
model using a Miller-Abrahams conductance network [7] in which the voltage is set 
equal to VL(R) at all the sites within 5% of the length of the sample at the left-hand (right- 
hand) end. These are contact regions and the voltages assumed in them make the 
occupation probability f, of the mth contact site independent of the voltage drop across 
the sample. In the non-linear regime we also began by assuming thatf, in the contacts 
is independent of applied field. However, this procedure gives results which do not 
conserve the overall number of electrons in the sample. To achieve such conservation 
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we employ here boundary conditions of the type originally introduced by Bottger and 
Wegener [3].  However, to simplify their application, we suppose that all the contact 
sites have the same energy. Then the contact boundary condition reduces to fm = f ,  
independent of m, for all sites m in both contacts. For ‘interior’ sites m lying between 
the contact regions the energy E, is taken to be a random variable lying in the range 

The question arises as to whether the new boundary conditions yield the same results 
in the Ohmic regime as the old ones. The answer would be expected to be in the 
affirmative, because, although the old results violate overall electron number conser- 
vation, they do so only by an infinitesimal amount in the Ohmic regime which should 
not affect the conductivity obtained by solving the non-linear equations with the new 
boundary conditions for low fields. We also extend the old calculations of the size 
dependence of the Ohmic conductivity up to N = lo4. Finally in the non-Ohmic regime, 
we calculate the field dependence of the fluctuations of the current with varying chemical 
potential. 

We consider a system of hopping sites randomly located on a straight line at the 
points x,, where m is an integer labelling the sites. An electron on site m has an energy 
which we denote by E,,,. The values of E, are selected as described above. The hopping 
rate between sites m and n at temperature Tis given by 

(-W, W/2). 

where 

Y m n  = Y m  - Y n  

y,,, = (E, + eExm)/2kBT. 

( 3 )  

(4) 
Here R,  is only weakly temperature-dependent in comparison with the exponential 
factors in (1) and in the numerical calculations, Ro is set equal to a constant. The quantity 
a-’ is the localization length, kB is Boltzmann’s constant, E is an applied electric field 
and the electrical charge e = i e 1 .  

The particle current from site m to site n is given by 

j m n  =fm( l  - f n > R m n  - f n ( l  -fm)Rnm 

= W m n  V m ( 1  - f n )  exp(Ymn 1 - f n ( 1  - f m )  ~ X P ( Y  nm > I  ( 5 )  

W m n  ~ ( 1  exp(-2+mn l)/2 SinhlYmn I = Wnm (6) 

where 

We consider a steady state and at each ‘interior’ site m (i.e. when xm is in the part of 
the line between the contacts) we have particle conservation: 

n 

Moreover, the total particle current is 

J =  C C, j m n  
m < m ’  n s m ’  

where m* is any fixed interior site. 
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The quantitiesf, for all interior sites may be determined from equation (7) if all the 
fm values are known in the exterior (contact) sites. We have taken all sites within 10% 
of each end of the system to constitute 'contact regions' (cR). The values offm in these 
regions are denotedf, andf, for the left- and right-hand contacts respectively. Following 
Bottger and Wegener we set f L  = fR. We then need I + 1 equations to solve for the fm  

values where l i s  the number of interior sites. The Iinterior equations are those included 
in equation (7), and the ( I  + 1)th equation expresses the conservation of overall electron 
number 

with 

f: = [iexp{-(&, - p ) / k g T }  + 11-l (10) 
denoting the equilibrium value of the occupation probability of site m when the Fermi 
level is p. The summations of equation (9) are over the sites in the contacts as well as in 
the interior. 

The numerical problem to be solved is reduced to a set of non-linear equations 

F,(ff+' ,  * . . ,f;y , f ;  . . . , f k )  = 0 i = l . .  . N 

in which k identifies the iteration number. For any particular iteration equations (11) 
may be solved forf,, i = 1, . . . N a n d f f +  set equal toff. This procedure forms the basic 
step of a non-linear Gauss-Seidel iteration which may be generalised to a non-linear 
successive over-relaxation (SOR) method in which we set ff+ = ff- + w k  (fl - f f ) .  Here 
wk is a suitable relaxation parameter. If we restrict ourselves to a one-step SOR method 
the explicit form becomes 

f:" = f f (  - w D - ' F I ( f k . ' )  i =  1,. . . N k = 0 , 1 , .  . . (12)  

where 

with T denoting the transpose of the vectorfk.' and k the iteration number. In equation 
(12)  

D = d,F,(fk.') (13b) 

D = [ F ,  ( f k . ' )  - F{fks' - Ff ( fk~ ' )~ ' } ] /F , ( fk . ' )  (13c) 

which is explicitly given by 

where U' is a vector in which the ith element is set equal to 1 and all other elements are 
set equal to 0. The set of equations defined by equation (12)  have been solved on a 
CRAY X-MP/48 at the Rutherford-Appleton Laboratory. The computations proceed 
at a sustainable rate of 141 Mflops. 

Throughout the calculations the energy values are chosen randomly in the range 
- W/2 to + W/2  with W = 1 meV, the localization length a-' = lo2 nm and the average 
intersite spacing a = 2 nm. Then the sample length is L = aN, where N is the number of 
sites. To present the results we introduce reduced variables 

T" = k g T / W  (14a) 

E* = eEL/W (14b) 
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Figure 1.  log J *  against p for E* = T* = 
0.008 and N = 1000; - : particles are con- 
served and CR = 10%; ---: particles are not 
conserved and CR = 10% coincides exactly with 
full curve; - - -: particles are conserved and CR = 
5%. 

J *  = J/Ro 
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Figure 2. log J *  against p for E* = lo-), T* = 
0.008 and N = 1000; - : particles are con- 
served and CR = 10%; ---: particles are not 
conserved and CR = 10%; -- -: particles are con- 
served and CR = 5 % .  

and set T* = 0.008 which is the largest value used in reference [6]. The energy scale of 
the current fluctuations is determined by kBT. The use of a relatively high temperature 
means that we may carry out the computation with a reasonably coarse interval for p. 
Steps of kgT/2 are fine enough to prevent both loss of structure and the imposition of 
artificial structure. 

with N = lo3. The full line is 
obtainedusingequation ( 9 ) f o r c ~  = 10%. Itconcealsanotherplotobtainedusingtheold 
boundary conditions for CR = 10%. With E* = we are well down in the Ohmic 
region of the current-field characteristic. We see that, in this region, the calculated 
values of J *  are insensitive to the imposition of total electron number conservation. 
They are actually much more sensitive to the extent of the contact regions which affects 
the hopping rates taken into account in the interior of the line. This is illustrated by the 
dotted line which is drawn for CR = 5% when the new boundary conditions are imposed. 

The full line is for CR = 10% and the 
dotted line is for CR = 5 % ,  both obtained using equation (9). The difference between 
these two plots is similar to that found in figure 1 when E* = The dashed curve in 
figure 2 is obtained with CR = 10% by replacing equation (9) by the old boundary 
conditionf,,, =fL in the contacts. We see that it differs significantly from the full line. 
With E* = we have moved out of the Ohmic regime and the imposition of total 
electron number conservation makes a significant difference to the results. 

In figure 3 we give similar results for E* = 10, lo-* and lo-'. Total electron number 
conservation is imposed in all cases. The figure shows the field dependence of the 
fluctuations as the field E* moves out of the Ohmic region ( E *  = through inter- 
mediatevalues ( E *  = tolargevalue (E*  = 10). Wesee thatthefluctuationssmooth 
out as E* increases. This observation is confirmed in figure 4 which is a plot of the 
standard deviation of the fluctuations of log J* as a function of log E * .  The standard 
deviation itself shows fluctuations (full curve) but when these are smoothed out (broken 
curve) we find a significant decrease from 0.6 when E* = to <0.1 when E* > 1. 
Finally, in figure 5 we plot (log J * ) ,  against the number of sites N .  Here, the angle 
brackets indicate an average over p (51 values). Again there are significant fluctuations 
(full curve) but a definite trend towards what appears to be an asymptotic limit is found 
when the fluctuations are smoothed out (broken curve). 

In figure 1 we plot log J* against p for E* = 

Figure 2 shows similar results when E* = 
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Figure 5. (logJ*), against the number of 
sites N for T* = 0.008. 

log J*L 

Figure 3. log J *  against p for T* = 0.008, N = 
1000, CR = 100/0 with particles conserved when 
E" =]()(-);E* = 10-'(-----)andE" = 
10-5 (---), 

Figure 4. A plot against log E* of the standard 
deviation of the fluctuations of logJ* obtained by 
varying the chemical potential, (CR = lo%, T* = 
0.008). 

These preliminary results are easily extended to discuss the behaviour of the current- 
field characteristic in the non-Ohmic regime. We discuss that in another paper. The 
purpose of the present communication is threefold. Firstly, to show that the previous 
neglect of total electron number conservation in the Ohmic regime did not affect the 
published results. Secondly, to show that this conservation law is important in the non- 
Ohmic regime and thirdly, to show that the extent of current fluctuations with varying 
Fermi level becomes smaller at high fields. 

This work was accomplished while one of the authors (GPT) was visiting the Department 
of Physics in the University of Warwick whose hospitality is gratefully acknowledged. 
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